Exported Functions
RadialBasisFunctions.PHS — Methodfunction PHS(n::T=3; poly_deg::T=2) where {T<:Int}Convienience contructor for polyharmonic splines.
RadialBasisFunctions.directional — Methodfunction directional(data, eval_points, v, basis; k=autoselect_k(data, basis))Builds a RadialBasisOperator where the operator is the directional derivative, Directional.
RadialBasisFunctions.directional — Methodfunction directional(data, v, basis; k=autoselect_k(data, basis))Builds a RadialBasisOperator where the operator is the directional derivative, Directional.
RadialBasisFunctions.gradient — Methodfunction gradient(data, basis; k=autoselect_k(data, basis))Builds a RadialBasisOperator where the operator is the gradient, Gradient.
RadialBasisFunctions.gradient — Methodfunction gradient(data, eval_points, basis; k=autoselect_k(data, basis))Builds a RadialBasisOperator where the operator is the gradient, Gradient. The resulting operator will only evaluate at eval_points.
RadialBasisFunctions.partial — Methodfunction partial(data, eval_points, order, dim, basis; k=autoselect_k(data, basis))Builds a RadialBasisOperator where the operator is the partial derivative, Partial. The resulting operator will only evaluate at eval_points.
RadialBasisFunctions.partial — Methodfunction partial(data, order, dim, basis; k=autoselect_k(data, basis))Builds a RadialBasisOperator where the operator is the partial derivative, Partial, of order with respect to dim.
RadialBasisFunctions.regrid — Methodfunction regrid(data, eval_points, basis=PHS(3; poly_deg=2); k=autoselect_k(data, basis))Builds a RadialBasisOperator where the operator is an regrid from one set of points to another, data -> eval_points.
RadialBasisFunctions.∂virtual — Methodfunction ∂virtual(data, eval_points, dim, Δ, basis; k=autoselect_k(data, basis))Builds a virtual RadialBasisOperator whichi will be evaluated at eval_points where the operator is the partial derivative with respect to dim. Virtual operators interpolate the data to structured points at a distance Δ for which standard finite difference formulas can be applied.
RadialBasisFunctions.∂virtual — Methodfunction ∂virtual(data, dim, Δ, basis; k=autoselect_k(data, basis))Builds a virtual RadialBasisOperator whichi will be evaluated at the input points (data) where the operator is the partial derivative with respect to dim. Virtual operators interpolate the data to structured points at a distance Δ for which standard finite difference formulas can be applied.
RadialBasisFunctions.AbstractPHS — Typeabstract type AbstractPHS <: AbstractRadialBasis
Supertype of all Polyharmonic Splines.
RadialBasisFunctions.AbstractRadialBasis — Typeabstract type AbstractRadialBasis <: AbstractBasis endRadialBasisFunctions.Custom — TypeCustom <: ScalarValuedOperatorBuilds an operator for a first order partial derivative.
RadialBasisFunctions.Directional — TypeDirectional{Dim,T} <: ScalarValuedOperatorOperator for the directional derivative, or the inner product of the gradient and a direction vector.
RadialBasisFunctions.Gaussian — Typestruct Gaussian{T,D<:Int} <: AbstractRadialBasisGaussian radial basis function:$ϕ(r) = e^{-(ε r)^2}$
RadialBasisFunctions.Gradient — TypeGradient{Dim} <: VectorValuedOperatorBuilds an operator for the gradient of a function.
RadialBasisFunctions.Interpolator — Typestruct InterpolatorConstruct a radial basis interpolation.
RadialBasisFunctions.Interpolator — Methodfunction Interpolator(x, y, basis::B=PHS())Construct a radial basis interpolator.
RadialBasisFunctions.Laplacian — TypeLaplacian <: ScalarValuedOperatorOperator for the sum of the second derivatives w.r.t. each independent variable.
RadialBasisFunctions.MonomialBasis — Typestruct MonomialBasis{Dim,Deg} <: AbstractBasisDim dimensional monomial basis of order Deg.
RadialBasisFunctions.PHS1 — Typestruct PHS1{T<:Int} <: AbstractPHSPolyharmonic spline radial basis function:$ϕ(r) = r$
RadialBasisFunctions.PHS3 — Typestruct PHS3{T<:Int} <: AbstractPHSPolyharmonic spline radial basis function:$ϕ(r) = r^3$
RadialBasisFunctions.PHS5 — Typestruct PHS5{T<:Int} <: AbstractPHSPolyharmonic spline radial basis function:$ϕ(r) = r^5$
RadialBasisFunctions.PHS7 — Typestruct PHS7{T<:Int} <: AbstractPHSPolyharmonic spline radial basis function:$ϕ(r) = r^7$
RadialBasisFunctions.Partial — TypePartial <: ScalarValuedOperatorBuilds an operator for a first order partial derivative.
RadialBasisFunctions.RadialBasisOperator — Typestruct RadialBasisOperatorOperator of data using a radial basis with potential monomial augmentation.
RadialBasisFunctions.RadialBasisOperator — Methodfunction (op::RadialBasisOperator)(y, x)Evaluate the operator at x in-place and store the result in y.
RadialBasisFunctions.RadialBasisOperator — Methodfunction (op::RadialBasisOperator)(x)Evaluate the operator at x.
RadialBasisFunctions.Regrid — TypeRegridBuilds an operator for interpolating from one set of points to another.
Private
RadialBasisFunctions._calculate_thread_offsets — Method_calculate_thread_offsets(adjl, boundary_flag, nchunks)Calculate the starting offsets for each thread when filling LHS and RHS matrices.
- lhs_offsets: Starting indices for internal-to-internal connections
- rhs_offsets: Starting indices for internal-to-boundary connections
Returns a tuple of (lhsoffsets, rhsoffsets).
RadialBasisFunctions._return_global_matrices — Method_return_global_matrices(I_lhs, J_lhs, V_lhs, I_rhs, J_rhs, V_rhs, boundary_flag)Constructs sparse matrix representation of the global linear system.
Arguments
I_lhs,J_lhs,V_lhs: COO format components for LHS matrixI_rhs,J_rhs,V_rhs: COO format components for RHS matrixboundary_flag: Boolean array indicating boundary nodes
Returns
- For single operators: tuple of (lhsmatrix, rhsmatrix)
- For multiple operators: tuple of (lhsmatrices, rhsmatrices)
RadialBasisFunctions.autoselect_k — Methodautoselect_k(data::Vector, basis<:AbstractRadialBasis)See Bayona, 2017 - https://doi.org/10.1016/j.jcp.2016.12.008
RadialBasisFunctions.AbstractBasis — Typeabstract type AbstractBasis end